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The polytropic contraction of a mixture of an ideal gas and solid
particles is examined. The obtained relationship is compared with
experimental data.

It has been suggested that a two-component gas-
solids system can be used as a thermodynamic work-
ing medium [1-3]. Such media are of great promise

in that they provide a means of increasing the thermal

efficiency of heat power plants by virtue of the fact

that the processes of contraction and expansion become

almost isothermal.
In El'perin and Minkov's paper [2] some thermo-
dynamic cycles were analyzed and an expression for

the polytropic exponent was obtained. This expression,
however, ignored several very important factors which

affect the nature of the process. These include the
rate of heat transfer between the particles and gas,
the time of the process, and so on. In this paper we
attempt to take these factors into account and obtain
a more general expression for the polytropic expo-
nent,

We consider a system consisting of an ideal gas
with solid particles suspended in it. We assume that
the system is adiabatically isolated; the volume of the
particles during contraction (expansion) remains con-
stant; the particles are spherical, are uniformly dis-
tributed throughout the volume, and do not interact
with one another; no chemical reactions take place,
and there is no heat transfer.

From the first law of thermodynamics we can write

for the gas,

dq du dv

M2 =M == Mp —— , 1

dt dt + Mp dz L

and for the particles
dq di
M S =M, =5, 2
My dt S de (2)

Since the system is assumed to be adiabatically
isolated, the left side of Eq. (1) is equal to the left
side of Eq. (2) with the opposite sign

My s (3)
dz dv
Introducing the symbol 4 = Mg/M and using rela-
tionship (3) we obtain

diy  du dv di dp
— -—=~*+ —_———— _— . 4
S T e )

We write the last expression in the form of two

equations:
diy du du
—_p 2 2= 2 4a
¥ dt drv P dt (1a)

s &, ap (4b)
dt d= dt

Regarding the enthalpy of the particles as depen-
dent on the time through the temperature of the gas,
i.e.,

is = f [t (T)]a
we obtain
diy _ diy gt odb, dt )
dz dt d= dt dz
On the other hand, for an ideal gas,

du dat  di dt

— =g, s —-——c —_ . 6
dt dv P dx ©)
Substituting relationships (5) and (6) in (4a) and
(4b), we write:
dt dv
Co —= =p —, 6
( +e ) dv P dz (62)
di, dt dp
— —= —_—— U 6b
(”CS i TC”) dr dv (6b)

Dividing the second equation by the first, we obtain

el )

- Y dp
—pdrd/ M

The contraction (expansion) of a two~component
medium is polytropic with a variable polytropic index,
the instantaneous value of which is

vdp
pdv

In view of this and also the fact that cp/cy =k, we
obtain from Eq. (7) the following expression for the
polytropic exponent:

forn 2 )

In the case of absence of solid particles, i.e., u =
=0, n=k, andwhen g — o, n — 1,

When the temperatures of the gas and particles are
equal (tg = t, dtg = dt) we obtain from expression (8)
the formula proposed by El'perin and Minkov [2], i.e.,

=(k+u fi)/(l«wfi). (9
CU CU
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In the real thermodynamic process the presence of
a thermal resistance external to the particles has the
result that the rate of change of temperature of the
particles is much lower than that of the temperature
of the compressible medium (gas). The difference
depends on the rate of heat transfer between the par-
ticles and the gas. Thus, other conditions being equal,
at the initial instant of the process dtg/dt= 0 and n=
=k, while at the end of the process, if tg=1, then
n = ng.

In other words, in the real process the mean value
of the polytropic exponent must satisfy the condition

ne L nL k. (10}
We write

dt,

—_— = H 11

= o (1) (11)

¢(0) =0, p(re) =1.

To determine ¢(71) we consider the heat transfer
between the spherical particles and the gas when Bi —
—~ 0. The heat transmitted from the gas to the parti-

- cles changes the heat content of the latter, i.e.,

dt
B Cq ﬁ=a(t——ts)4nR§No, (12)

(11a)

where Nj is the number of particles in 1 kg of gas, and
4 b3
u=ps?nRsN0. (13)

Substituting the value of N, from (13) in (12), we
obtain

dt 3a -
—8 e (f— ). 14
T (14)

- We differentiate the left and right sides Eq. (14)
with respect to the gas temperature. Then

dt \dz ¢ s R dt ]’

If we expand t(7) in a power series

)= i a, ™
0

and restrict ourselves to the linear approximation,
the operations of differentiation with respect to t and
7 in the left side of Eq. (15) commute, i.e.,

4 (dis)\_ d (db (16)
dt \d=z de \dt )’

Using relationship (16) and Eq. (11) we obtain the
following differential equation to determine the func-
tion @ (7):

d 3a
e ()} (17)
dt N

Separating the variables and integrating with due

regard to boundary conditions (11a), we obtain

¢(t)=1-—exp (————BGTS T) . (18)

CsPs
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In this case the expression for the polytropic ex-
ponent takes the form

n= {k—]—p,—ﬁ- [l—exp (__ia__ T)]} X
Cy P R,
i c 3a -1
X{l—i—u—s[l—exp (————r)“ .9
CU CSPSRS

The mean value of the polytropic exponent during
the process is

h‘=ij n(t)dr. (20)
T

0

Integrating and carrying out some algebraic trans-
formations we obtain the final expression for the mean
value of the polytropic exponent:

- 1
Pe (e ) (e )

X 1n{1+p, % {l—exp (—BBiFo)]} X

¢
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In the limiting case, when T — «, relationship (21)
becomes expression (9).

The values of the polytropic exponent calculated
from formula (21) were compared with the experi-
mentally obtained values. The apparatus on which the
experiment was conducted was described in [4]. A mix-
ture of air and particles of natural graphite (particle
size 10u) was compressed in arotary compressor. The
concentration, temperature, and pressure of the mix-
ture were measured in the experiments. The time of
the contraction process was determined from the travel
of the piston for a known number of revolutions of the
compressor, The coefficient of heat transfer between
the gas and graphite particles was evaluated from the
formula

a=1.8Md,, (22)
which is valid for round particles in the case of un~
detached flow [3]. A comparison of the values of the
polytropic exponent calculated from formula (21) with
the experimentally obtained values showed that the dif-
ferences were not more than 3%. For instance, at
graphite concentrations of 4.5, 10.9 and 13.3 kg/kg the
polytropic exponent was, respectively, 1.072, 1.067,
and 1.046 by experiment, and 1.075, 1.050, and 1,037
by calculation.

Thus, the obtained expression for the polytropic
exponent can be used to calculate and analyze the cy-
cles of heat power plants in which the working me-
dium is composed of a gas and solid particles.

NOTATION

M is the mass; q is the heat flux; T is the time of
process; u is the internal energy of gas; p is the pres-
sure; v is the specific volume; i is the enthalpy; u is
the mass concentration of solid phase; t is the tem-
perature; cg, Cp, Cv are the specific heat of particle
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material, specific heat of gas for p = const and v =

= const, respectively; n is the polytropic exponent;

k is the adiabatic exponent; « is the coefficient of heat
transfer between gas and particles; Ry is the particle
radius; p is the density; A is the thermal conductivity;
Bi is the Biot number; Fo is the Fourier number. The
subscript s indicates that the value relates to the solid
phase,.
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